Nodal domain statistics for quantum maps, percolation, and stochastic Loewner evolution.

نویسندگان

  • J P Keating
  • J Marklof
  • I G Williams
چکیده

We develop a percolation model for nodal domains in the eigenvectors of quantum chaotic torus maps. Our model follows directly from the assumption that the quantum maps are described by random matrix theory. Its accuracy in predicting statistical properties of the nodal domains is demonstrated for perturbed cat maps and supports the use of percolation theory to describe the wave functions of general Hamiltonian systems. We also demonstrate that the nodal domains of the perturbed cat maps obey the Cardy crossing formula and find evidence that the boundaries of the nodal domains are described by stochastic Loewner evolution with diffusion constant close to the expected value of 6, suggesting that quantum chaotic wave functions may exhibit conformal invariance in the semiclassical limit.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introduction to Schramm-Loewner evolution and its application to critical systems

In this short review we look at recent advances in Schramm-Loewner Evolution (SLE) theory and its application to critical phenomena. The application of SLE goes beyond critical systems to other time dependent, scale invariant phenomena such as turbulence, sand-piles and watersheds. Through the use of SLE, the evolution of conformally invariant paths on the complex plane can be followed; hence a...

متن کامل

The Loewner Differential Equation and Slit Mappings

In his study of extremal problems for univalent functions, K. Löwner [11] (who later changed his name into C. Loewner) introduced the differential equation named after him. It was a key ingredient in the proof of the Bieberbach conjecture by de Branges [2]. It was used by L. Carleson and N. Makarov in their investigation of a process similar to DLA [3]. Recently, O. Schramm [20] found a descrip...

متن کامل

Nodal domain distributions for quantum maps

The statistics of the nodal lines and nodal domains of the eigenfunctions of quantum billiards have recently been observed to be fingerprints of the chaoticity of the underlying classical motion by Blum et al These statistics were shown to be computable from the random wave model of the eigenfunctions. We here study the analogous problem for chaotic maps whose phase space is the two-torus. We s...

متن کامل

Schramm-Loewner evolution and Liouville quantum gravity.

We show that when two boundary arcs of a Liouville quantum gravity random surface are conformally welded to each other (in a boundary length-preserving way) the resulting interface is a random curve called the Schramm-Loewner evolution. We also develop a theory of quantum fractal measures (consistent with the Knizhnik-Polyakov-Zamolochikov relation) and analyze their evolution under conformal w...

متن کامل

Critical exponents for two-dimensional percolation

We show how to combine Kesten’s scaling relations, the determination of critical exponents associated to the stochastic Loewner evolution process by Lawler, Schramm, and Werner, and Smirnov’s proof of Cardy’s formula, in order to determine the existence and value of critical exponents associated to percolation on the triangular lattice.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 97 3  شماره 

صفحات  -

تاریخ انتشار 2006